

Robust Multi-Modality Multi-Object Tracking

Wenwei Zhang¹, Hui Zhou², Shuyang Sun³, Zhe Wang², Jianping Shi², Chen Change Loy¹ ¹Nanyang Technological University, ²SenseTime Research, ³University of Oxford

Why Multi-Modality MOT in Autonomous Driving?

Sequential information of moving objects is helpful. **But:**

- Relying on single sensor lacks reliability
 Multi sensor
- 2. Multi-sensor information could reinforce the perception ability

Contributions:

1. A multi-modality MOT framework with a robust fusion module that exploits multi-modality information to improve both reliability and accuracy.

Overexposure

LIDAF

- 2. A novel end-to-end training method that enables joint optimization of crossmodality inference.
- 3. The first attempt to apply deep features of point cloud for tracking and obtain competitive results.

How to Exploit Multi-Modality and Keep Robust to Sensor Failure?

Fusion Module: Only provides fused modality. (Lacks reliability!!) **Robust Fusion Module**: Also provides single modality.

- 1. The feature extractors extract features from image and LiDAR for each bounding box.
- 2. The robust fusion module fuses the multi-sensor features and outputs all the modalities.
- 3. The correlation operator produces the correlation features for each detection pair.
- 4. The adjacency estimator predicts the adjacency matrix based on correlation features.

How to Deal with Multi-Modality?

- Features of different modalities are concatenated in the batch dimension.
- Correlation operation is **batch-agnostic**.
- Convolution and pooling in the adjacency estimator are batch-agnostic.

Advantages:

- Accurate: State-of-the-art on the KITTI benchmark.
- Robust: Still competitive under sensor failure.

Comparison on the testing set of KITTI tracking benchmark

	Method	MOTA	MOTP	Prec.	Recall	FP	FN	ID-s	Frag.	MT	ML
	DSM [Frossard et al., ICRA2018]	76.15	83.42	98.09	80.23	578	7328	296	868	60.00	8.31
	extraCK [Gunduz et al., IV2018]	79.99	82.46	98.04	84.51	642	5896	343	938	62.15	5.54
	PMBM [Scheidegger et al., IV2018]	80.39	81.26	96.93	85.01	1007	5616	121	613	62.77	6.15
	JCSTD [Tian et al., IEEE TITS2019]	80.57	81.81	98.72	83.37	405	6217	61	643	56.77	7.38
	IMMDP [Xiang et al., ICCV2015]	83.04	82.74	98.82	86.11	391	5269	172	365	60.62	11.38
	MOTBeyondPixels [Sharma, et al., ICRA2018]	84.24	85.73	97.95	88.80	705	4247	468	944	73.23	2.77
	mmMOT with multi-modality	84.77	85.21	97.93	88.81	711	4243	284	753	73.23	2.77
	mmMOT with point cloud only	84.53	85.21	97.93	88.81	711	4243	368	832	73.23	2.77
	mmMOT with image only	84.59	85.21	97.93	88.81	711	4243	347	809	73.23	2.77

Failure Analysis:

- Occlusion, illumination and long distance are still challenging.
- Detector could cause early failures (False Negative).

(a) Occlusion Histogram

Interesting Phenomenon:

1. Most of ID switches come with occlusion. Occlusion causes more errors when only using point cloud than image.

2. More errors come with small bounding box size and long distance. Point cloud modality faces more errors in such cases.

Paper, code at: https://github.com/Z wwWayne/mmMOT

